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1. Introduction

Strings and supergravity backgrounds with non trivial RR and NS fluxes are intensively

studied in the AdS/CFT correspondence [1] and in string compactification (see [2] and

reference therein), in order to find string models holographically dual to more realistic gauge

theories or to obtain sensible phenomenology from compactification. Here D-branes are

successfully used as probes to explore the geometric properties of known backgrounds, and

to provide further insights in the gauge/gravity duality. We focus on type IIB supergravity

solutions which preserve four dimensional Poincaré invariance and N = 1 supersymmetry.

They correspond to a warped product of the four dimensional Minkowski spacetime and

an internal six dimensional manifold M, which can support fluxes. In the presence of non

trivial background fluxes, the back-reacted internal manifold M is no longer Calabi Yau.

There are special classes of solutions [3] where the internal manifold is conformal Calabi

Yau, but in general [4, 5] the internal manifold with fluxes can be far different from the
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Calabi Yau case. The formalism of G-structures [6] and Generalized Complex Geometry

(GCG) [7, 8, 4, 5] provide powerful tools to describe such manifolds. In GCG the basic

objects are pure spinors, formal sums of even and odd forms. Their existence imposes

topological constraints on the tangent and cotangent bundles of the internal manifold.

Supersymmetry requires that the internal manifold has a SU(3)×SU(3) structure on TM ⊕
T ∗

M , which may be further restricted to SU(3) or SU(2) structures on TM . The SU(3)

structure has been much studied, e.g. [9], while the SU(2) case has been explored in [10]

and, using GCG, in [11]. As a matter of fact, supergravity solutions with fluxes dual to

massive and marginal deformations of superconformal gauge theories are expected to be

described by SU(2) structure manifolds. Such manifolds are characterized by the existence

of a globally defined nowhere vanishing vector field.

In the GCG language the preservation of N = 1 supersymmetry is achieved by im-

posing a pair of differential equations for the pure spinors. The authors of [11] made an

ansatz for pure spinors of SU(2) structure manifolds and performed a detailed analysis of

these pair of supersymmetry equations. Their ansatz covers a large class of solutions. In

particular the Pilch Warner [12] and the Lunin Maldacena [13] ones are included: they are

the gravity duals of the single mass deformation and of the beta marginal deformation of

N = 4 SYM, respectively.

In the GCG framework the supersymmetry conditions for D-branes probing SU(3) ×
SU(3) backgrounds have been established in [14, 15] (see also [16]). They are a set of

constraints on the pull back of the pure spinors on the world volume of the D-brane.

In [15] the supersymmetry conditions were given for D-branes filling Minkowski space time

(space time filling), filling three space time directions (domain walls) and two space time

directions (effective strings).

The addition of D-brane probes to the class of solutions of [11] can provide other

interesting tests of the AdS/CFT correspondence. Supersymmetric configurations of D-

branes can identify the moduli space of vacua of the dual gauge theory, in both the abelian

and the non abelian branches. D5 domain wall like configurations can lead in the dual

description to three dimensional defects, interacting with the conformal four dimensional

gauge theory; the defect gauge invariant operators can then be mapped into the Kaluza

Klein modes of the wrapped brane [17]. The addition of space time filling D7-branes

corresponds to adding massless or massive flavours [18] and their fluctuations give the

meson spectrum of the dual flavoured gauge theory.

In [11] the space time filling D3-brane configurations have been analyzed and it was

shown that the supersymmetry conditions for such branes reproduce the mesonic moduli

space of vacua of the dual field theory. Moreover the D5-brane configuration with world

volume flux, related to the non abelian phase of the beta deformed gauge theory [13, 19],

was recovered.

In this paper we investigate new supersymmetric D-brane configurations in the class

of SU(2) structure manifolds of [11], and we propose the dual gauge theory interpretation

as well as possible applications of the results.

We look for supersymmetric D5 domain wall like configurations finding a supersym-

metric embedding which can be used to holographically study three dimensional defects
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coupled to the massive deformation of N = 4 SYM.

We study a supersymmetric embedding of space time filling D5-branes with non trivial

world volume flux in the Pilch Warner solution.

We explore different D7 supersymmetric embeddings suitable for adding flavour to the

whole class of solutions, suggesting in each case the dual flavored gauge theory. These

embeddings identify supersymmetric four cycles. Although the formalism we adopt does

not apply to the non static case, these supersymmetric four cycles should be mapped, with

a strategy similar to [20], to non static configurations of D3 branes (giant gravitons) in

this class of backgrounds.1

Finally, we find supersymmetric configurations of D3 and D7 branes which behave as

effective strings in the four dimensional gauge theory description.

The paper is organized as follows. In section 2 we outline the spinor ansatz for

SU(2) structure manifolds [11] and in section 3 the GCG supersymmetry conditions for

D-branes [15]. In section 4, after a brief survey of the supersymmetric family of back-

grounds which includes the PW flow, we look for supersymmetric embeddings of D-branes.

We present different D-brane configurations and we solve their supersymmetry conditions,

identifying supersymmetric embeddings. We give some details on the computations and we

interpret the supersymmetric configurations in the dual gauge theory. The same analysis

is carried out for D-brane probes in the LM geometry in section 5. In the appendices we

recall some useful definitions.

2. SU(2) structure manifolds and pure spinors

The ten dimensional metric is

ds2
10 = e2Aηµνdxµdxν + ds2

6 (2.1)

where the warp factor A is a function of the internal coordinates. The internal six dimen-

sional manifold has SU(2) structure. An SU(2) structure is characterized by two nowhere

vanishing spinors which are never parallel

η+ χ+ =
1

2
z · η− (2.2)

where η− is the complex conjugate of η+ and we denote with · the Clifford multiplication

zmγm. The six dimensional chiral spinors ηi
±, which are the supersymmetry parameters,

are then constructed

η1
+ = aη+ + bχ+ η2

+ = xη+ + yχ+ (2.3)

with a, b, x, y complex functions of the internal coordinates. The ten dimensional super-

symmetry parameters can be written as

ǫ1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− (2.4)

ǫ2 = ζ+ ⊗ η2
+ + ζ− ⊗ η2

− (2.5)

1For giants in the beta deformed background see [21].
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where ζ± are four dimensional chiral spinors. Given the never vanishing spinors just in-

troduced, a SU(2) structure manifold admits the following globally defined forms built as

bilinears in the spinors

j =
i

2
χ†

+γmnχ+dxm ∧ dxn − i

2
η†+γmnη+dxm ∧ dxn (2.6)

ω = −iχ†
+γmnη+dxm ∧ dxn (2.7)

z = −2χ†
−γmη+dxm (2.8)

where z is a complex 1-form, j a real 2-form, and ω a (2,0)-form satisfying

ω ∧ j = 0 j ∧ j =
1

2
ω ∧ ω̄ zxj = zxω = 0 (2.9)

The 1-form z is the globally defined complex vector characterizing the SU(2) structure.

In GCG the relevant equations can be written in terms of poliforms with definite parity,

the pure spinors. They are bispinors built by tensoring the supersymmetry parameters of

the internal manifold

Φ1 = η1
+ ⊗ η2†

+ (2.10)

Φ2 = η1
+ ⊗ η2†

− (2.11)

and are annihilated by six combinations of Clifford(6,6) gamma matrices. From (2.3) they

read

Φ1 =
1

8
[ax̄e−ij + bȳeij − i(aȳω + x̄bω̄)] ∧ ez∧z̄/2 (2.12)

Φ2 =
1

8
[i(byω̄ − axω) + (bxeij − aye−ij)] ∧ z

The SU(3) structure case is for b = 0 = y.

The ansatz used in [11] for the six dimensional supersymmetry parameters is the

following

η1
+ = aη+ + bχ+ η2

+ = −i(aη+ − bχ+) (2.13)

where the functions of (2.3) are parametrized as

a = ix = ieA/2 cos φ eiα b = −iy = −ieA/2 sinφ eiβ (2.14)

Here cos φ, sin φ, α and β are functions of the internal coordinates. The two supersymmetry

parameters η1
+, η2

+ can be brought to the form (2.13) if and only if Re(ax̄ + bȳ) = 0. This

corresponds to admit a non trivial mesonic moduli space of vacua [11].

We are interested in D-branes probing the class of backgrounds specified by the

ansatz (2.13), (2.14). This contains a family of supersymmetric backgrounds with constant

dilaton (which itself includes the PW flow), and the gravity dual of beta deformation. Since

the norms of the spinors η1 and η2 are equal, supersymmetric D-branes are admitted [15].
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θ a b

STF 0 1 2

DW θDW 2 1

ES −π
2 1 2

Table 1: Summary of the supersymmetry conditions.

3. Supersymmetry conditions for probe D-branes

In GCG the main tool to analyze supersymmetric embeddings of D-branes is the generalized

calibration introduced in [14, 15]. We will consider space time filling branes (STF), domain

walls (DW) and effective strings (ES) wrapping a submanifold Σ of the internal manifold.

The supersymmetry conditions for these extended objects in terms of the pure spinors and

their projection on the world volume read2

PΣ[Im(ieiθΦa)] ∧ eF = 0 (3.1)

PΣ[(in + gnmdxm∧)Φb] ∧ eF = 0 a, b = 1, 2 (3.2)

where gnm is the internal metric, in and dxm∧ are the usual operators mapping a p form

in a p − 1 and p + 1 form respectively, and finally3 F = F − PΣ[B], where F is the world

volume flux. The pullback on the world volume of the D-brane is denoted by PΣ. Space

time filling branes, domain walls and effective strings are summarized in table 1, where

θDW is an arbitrary constant [15].

The same dictionary of [15] is used to label the possible embeddings. However, since

the internal manifold is non compact, we should distinguish between the cases when the

wrapped submanifold Σ is itself compact or non compact. We will comment on this point

where needed.

4. D-branes on the family of supersymmetric backgrounds

4.1 The family of supersymmetric backgrounds

We now briefly review the family of supersymmetric backgrounds analyzed in [11] which

includes the PW flow [12]. The PW solution is the gravity dual of the massive deformation

of N = 4 SYM

W = hTrΦ3[Φ1,Φ2] + mTrΦ2
3 (4.1)

which flows in the IR to a non trivial fixed point [22]. The gravity dual is asymptotically

AdS in the UV and warped AdS in the IR. It is included in the following more general

ansatz [11] which is a family of supersymmetric backgrounds

ds2
6 = e−2A

(

ηiAij̄ η̄j̄ + zz̄
)

i, j = 1, 2 (4.2)

2We do not consider the orientation conditions on these objects.
3We are using the conventions of [4, 5, 11] which differs for an HNS sign with [15].
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where z is the globally defined vector characterizing the SU(2) structure. The matrix Aij̄

is hermitian, and the vielbeins are defined in terms of local complex coordinates zi

z1 = ρ1 + iσ1 z2 = ρ2 + iσ2 z3 = log u + iσ3 (4.3)

η1 = dz1 + α1dz3 η2 = dz2 + α2dz3 z =
√

a3udz3 (4.4)

with a3 real and αi complex functions of zi. The globally defined two forms are

j =
i

2
Aij̄ ηi ∧ ηj̄ (4.5)

ω = i
√

detA η1 ∧ η2 (4.6)

There are also non trivial RR and NS fluxes

∗F5 = −e−4Ad(e4A cos 2φ) (4.7)

C2 = Re

[

2iei(α−β)
√

detA

e2A sin 2φ
(dz1 ∧ dz2 − sin2 φη1 ∧ η2)

]

(4.8)

B2 = −Im

[

2iei(α−β)
√

detA

e2A sin 2φ
(dz1 ∧ dz2 − sin2 φη1 ∧ η2)

]

(4.9)

The dilaton is constant, parametrising the RG line of dual conformal gauge theories.

The supersymmetry equations for this background [11] imply that α = 1
2(σ1+σ2+3σ3),

β = −1
2(σ1 + σ2 −σ3) and that the functions a3, αi, Aij̄ can be obtained as derivatives of a

single function F (zi, z̄j̄). These are all real for the subclass of this family of backgrounds

which have an U(1)3 symmetry, i.e. when the function F (zi, z̄j̄) does not depend on the

phases σi. We call this the toric subclass; the PW flow belongs to it.

The detailed expressions for the family of backgrounds and how to recover the PW

flow are reported in the appendix A.

The pure spinors (2.12) are constructed with the rescaled forms z → e−Az and (j, ω)

→ (e−2Aj, e−2Aω) which refer to the complete six dimensional metric (4.2).

We look for supersymmetric embeddings of Dp-branes (with world volume coordinates

ξa (a = 0, . . . , p)) in this family of supersymmetric backgrounds, allowing in one case for

non trivial world volume gauge flux. The main tools are the conditions (3.1), (3.2).

Even if the family of backgrounds is larger, we shall take the PW solution as a paradigm

for the gauge theory dual interpretation of the brane configurations.

4.2 D5 domain walls

We study now a supersymmetric D-brane probe placed at x3 = 0 and which fills three

space time dimensions (ξ0, ξ1, ξ2) = (x0, x1, x2). It can be viewed as a domain wall solution

separating supersymmetric vacua. However, when the wrapped cycle is non compact,

the domain wall interpretation would imply an infinite potential barrier. Instead in the

AdS/CFT interpretation it is a three dimensional defect coupled to the four dimensional

dual gauge theory.

In the AdS5 × S5 case there are non trivial supersymmetric embeddings where a D5-

brane wraps an AdS4 inside the AdS5 plus a trivial 2-sphere inside the S5 [23]. The D5
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brane should shrink around this 2-sphere but the correspondent tachionic mode does not

lead to instability because its mass is above the BF bound [24]. This configuration has

been studied in [17] as a three dimensional defect in N = 4 SYM.

We look for similar configurations of D5-brane in the family of supersymmetric back-

grounds of section 4.1. We attempt the following three cycle embedding

zk = eiτk(ξk+2 + ick) z̄k = e−iτk(ξk+2 − ick) k = 1, . . . , 3 (4.10)

with τk and ck constants, and with no world volume flux, F = 0. This ansatz covers for

example the real slice (τk = 0, ∀k) and the imaginary slice (τk = π
2 , ∀k).

We restrict ourselves to the toric subclass. The complex functions αi, Aij̄ characterizing

the metric are then real and the computations simplify. We compute the supersymmetry

conditions (3.1) and (3.2) in the DW case of table 1.

The supersymmetry condition (3.1) results

PΣ[Im(ieiθDW Φ2)]∧eF =
1

8
Im[e−2A√a3u

√
detA ei(θDW +2β−τ1−τ2+τ3)] dξ3∧dξ4∧dξ5 (4.11)

where the functions are intended evaluated on the world volume. A choice of the constant

phase θDW can make it vanish only if the phase factor β does not depend on the embedding

coordinates ξk+2. This can be achieved taking the real slice (τk = 0, ∀k), such that β =

−1
2(c1 + c2 − c3). Then we choose θDW = −2β and the expression (4.11) vanishes.

For the real slice (τk = 0, ∀k), a detailed analysis shows that the supersymmetry

conditions (3.2) are satisfied provided α = β + π
2 . This implies the following relation

between the constants ck

c1 + c2 + c3 =
π

2
(4.12)

Hence we conclude that for the toric subclass a D5 brane embedded as in (4.10)

with τk = 0, with the constants ck satisfying (4.12) and with θDW = (c1 + c2 − c3) is

supersymmetric. In particular, such D5 brane is supersymmetric in the PW flow, since it

belongs to the toric subclass. In the PW geometry (see the appendix A) the D5 brane fills

the three radial directions.

This embedding can be used to study three dimensional defects in the massive defor-

mation of N = 4. The ci give the distance between the supersymmetric D5-brane and the

D-branes which generate the background. They represent masses for the 3D hypermultiplet

of the defect theory.

4.3 Spacetime filling D-branes

In this section we study D-brane probes filling all the Minkowski directions ξµ = xµ

(µ = 0, . . . , 3). The supersymmetry conditions are (3.1) and (3.2) in the STF case of table

1. We analyze here supersymmetric D5-brane embeddings with world volume flux, and D7

flavour branes.
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4.3.1 D5-branes

We take the following two cycle embedding Σ for a D5 brane probing the background of

section 4.1

zk = eiτk(ξk+3 + ick) k = 1, 2 z3 = c3 + ic4 (4.13)

with ck and τk real constants. We allow for a generic world volume flux F . The only non

trivial supersymmetry conditions for this configuration are the (3.1) and the z component

of (3.2), since Φ2 = · · · ∧ z and PΣ[z] = 0 from (4.13). The first one reads

PΣ[Im(iΦ1)] ∧ eF = − ie−A

16
(A12̄e

i(τ1−τ2) − A21̄e
−i(τ1−τ2)) dξ4 ∧ dξ5 (4.14)

and does not depend on the two form flux F = F − P [B] since PΣ[Im(iΦ1)]|0 = 0. This

expression cannot be made vanishing in general by a simple choice of the phases τ1, τ2.

However, if we restrict ourselves to the toric subclass the matrix Aij̄ is real and symmetric,

and A12̄ = A21̄. If we then choose τ1 = τ2 the expression (4.14) vanishes.

We compute the z component of the second supersymmetry condition

PΣ[(iz+gzz̄ z̄∧)Φ2] ∧ eF =− ie−2A

8
(Fξ4ξ5e

2Aei(α+β) sin 2φ +
√

det Ae−i(τ1+τ2−2β)) dξ4 ∧ dξ5

(4.15)

where Fξ4ξ5 is the world volume flux. The expression (4.15) vanishes if we turn on

F = −e−i(τ1+τ2+α−β)

√
det A

e2A sin 2φ
dξ4 ∧ dξ5 (4.16)

which for consistency should be real. The choices

τ1 = τ2 = 0 α − β = c1 + c2 + c3 = 0 (4.17)

make the flux (4.16) real, since the phase factor in (4.16) is now independent of the em-

bedding coordinates ξk+3 and moreover it vanishes. We conclude that the choices (4.16)

and (4.17) make the D5 brane configuration (4.13) supersymmetric in the toric subclass.

However particular care is needed in considering this embedding; indeed we observe

that the D5 brane wraps a non compact submanifold and then the flux F is along non

compact coordinates (see for example the coordinates for the PW geometry in appendix

A).

4.3.2 D7 flavour branes

Here we look for supersymmetric D7-brane embeddings suitable for adding flavours to the

family of backgrounds of section 4.1. The D7 branes should wrap a non compact four

cycle in order to make the flavour symmetry group global. Adding Nf D7 branes on this

non compact four cycle is dual to add Nf flavours with symmetry group SU(Nf ) to the

SU(Nc) gauge theory provided Nf < Nc, so that the back-reaction of the D7-branes can be

neglected. The shape of the D7 supersymmetric embedding sets the interaction terms in

the superpotential between the flavours and the chiral superfields of the dual gauge theory

as well as possible masses for the flavours.
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In a SU(2) structure manifold the globally defined vector z naturally identifies a four

dimensional submanifold Σ where PΣ[z] = 0. Thus we attempt the embedding with PΣ[z] =

0, i.e. we place D7 branes as

xµ = ξµ µ = 0, . . . , 3

zk = ξk+3 + iξk+5 k = 1, 2 z3 = log m0 (4.18)

with no world volume flux, F = 0, and where m0 is an arbitrary constant. The first

supersymmetry condition (3.1) can be analyzed by keeping the 4, 2, 0 forms of the pulled

back pure spinor Φ1

iΦ1|0 = −eA

8
(cos2 φ − sin2 φ)

iΦ1|2 =
ie−A

8
(j + cos φ sin φ(ei(α−β)ω − e−i(α−β)ω̄))

iΦ1|4 =
e−3A

16
(cos2 φ − sin2 φ)j ∧ j

Taking the imaginary part of these expressions we obtain

PΣ[Im(iΦ1)] ∧ e−P [B] = −eA

8
P [j] ∧ P [B] = 0 (4.19)

This vanishes given the explicit expressions of j (4.5) and B (4.9) and reminding PΣ[z] =

0. The only non trivial supersymmetry condition of (3.2) is on the z component. The

projection on the pure spinor Φ2 is

PΣ[(iz + gzz̄ z̄∧)Φ2] =
1

8

(

− iei(α+β) sin 2φ + e−2Ae2iα cos2 φω +

+e−2Ae2iβ sin2 φ ω̄ +
i

2
e−4Aei(α+β) sin 2φ j ∧ j

)

The pullback of the NS two form (4.9) is

PΣ[B] = −
√

detA cos2 φ

e2A sin 2φ

(

ei(α−β)(dξ4 + idξ6) ∧ (dξ5 + idξ7) + (4.20)

+ e−i(α−β)(dξ4 − idξ6) ∧ (dξ5 − idξ7)

)

We then compute the terms which contribute to the z component of (3.2)4

PΣ[(iz + gzz̄z̄∧)Φ2]|4 =
iei(α+β)

e4A16
detA cos φ sin φ dVolΣ

PΣ[(iz + gzz̄z̄∧)Φ2]|2 ∧ (−PΣ[B]) =
iei(α+β)

16

cos φdet A

e4A sin φ
(cos2 φ − sin2 φ) dVolΣ

PΣ[(iz + gzz̄ z̄∧)Φ2]|0 ∧
1

2
PΣ[B] ∧ PΣ[B] = − iei(α+β)

16

cos3 φdetA

e4A sin φ
dVolΣ

4We denote the volume on the wrapped cycle with dVolΣ = (−4dξ4 ∧ dξ5 ∧ dξ6 ∧ dξ7).
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Adding these three contributions we conclude that

PΣ[(iz + gzz̄ z̄∧)Φ2] ∧ e−P [B] = 0 (4.21)

Then the configuration (4.18) is supersymmetric for the whole family of backgrounds con-

sidered in section 4.1, not only the toric subclass.

Other flavour embeddings We look also for other D7 brane embeddings which preserve

supersymmetry in the supersymmetric family of backgrounds of sec 4.1. The computations

of the supersymmetry conditions (3.1) and (3.2) are less easy but can be done with the

same procedure outlined above. We list the relevant results.

We can place the D7 brane orthogonal to one of the other complex coordinates

zk = log m0 zj = ξ4 + iξ5 z3 = ξ6 + iξ7 k 6= j = 1, 2 (4.22)

and after a long computation we find that this is a supersymmetric configuration, satisfy-

ing (3.1) and (3.2).

Other possible embeddings are submanifolds like the one suggested in [18], with chi-

ral symmetry breaking. We observe that the complex coordinates we are using (see the

appendix A) are the exponential of the usual complex coordinates which are in correspon-

dence with the chiral adjoint fields. Hence we consider embeddings like eziezj = m2
0. We

have to distinguish between two different cases. The first one involves the z3 component

ezjez3 = m2
0

zk = ξ4 + iξ5 zj = ξ6 + iξ7 z3 = log m2
0 − (ξ6 + iξ7) k 6= j = 1, 2

This configuration turns out to be non supersymmetric.

The second case does not involve the z3 coordinate

ez1ez2 = m2
0

z1 = ξ4 + iξ5 z2 = log m2
0 − (ξ4 + iξ5) z3 = ξ6 + iξ7 (4.23)

and it results supersymmetric.

The dual flavoured gauge theory. The D7 supersymmetric embeddings presented

here (4.18), (4.22), (4.23) can be used to add flavours to the PW flow.

If we add Nf D7-branes in the configuration (4.18) the dual gauge theory is N = 1 SYM

with three chiral adjoint fields and Nf massive flavours with mass m0, with superpotential

W = WN=4 + mTrΦ2
3 + tr QΦ3Q̃ + m0 tr QQ̃ (4.24)

where the first two terms are the mass deformation of N = 4 SYM (4.1). Since we are

neglecting the back-reaction of the D7 branes, the geometry filled by the D7-branes in

the IR is warped AdS5 and the theory flows to the same IR fixed point. For m0 6= 0, the

D7-branes end before reaching the IR.
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If we add Nf D7-branes as in (4.22) the gauge theory dual is again N = 1 SYM with

three chiral adjoint fields and Nf massive flavours, with superpotential

W = WN=4 + mTrΦ2
3 + tr QΦkQ̃ + m0 tr QQ̃ k = 1, 2 (4.25)

The flavours QQ̃ now couple to the massless adjoint field Φk.

Finally, if we add Nf D7-branes embedded as (4.23) the dual flavoured gauge theory

is N = 1 SYM with three chiral adjoint fields and two different Nf massive flavours, with

superpotential

W = WN=4 + mTrΦ2
3 + tr Q1Φ1Q̃1 + tr Q2Φ2Q̃2 + m0 tr (Q1Q̃2 + Q2Q̃1) (4.26)

where Q1 and Q2 denote the two flavours. This configuration can be interpreted as two sets

of Nf D7-branes at ez1 = m0 and ez2 = m0 respectively, each supporting different flavours,

which are joint smoothly into one set of Nf D7 branes wrapped on ez1ez2 = m2
0 [18]. On

the dual gauge theory picture there are two flavour groups SU(Nf )1 × SU(Nf )2 broken to

the diagonal subgroup by the mass term m0.

4.4 Effective Strings

We take D-branes that fill two coordinates in the Minkowski space time, for example at

x2 = x3 = 0, filling ξ0 = x0, ξ1 = x1. They can be viewed as propagating strings in the

four dimensional description. However, when the wrapped cycle of the internal manifold

is non compact, the effective string tension in the four dimensional picture diverges. The

supersymmetry conditions are the pair (3.1) and (3.2) in the ES case of table 1. We find

supersymmetric embeddings of both D3 and D7 branes which involve non compact cycles

in the internal manifold. The D3 brane wraps a two cycle, whereas the D7 brane fills the

whole internal manifold. Our analysis concern the whole family of backgrounds presented

in section 4.1.

D3 effective strings. We place D3-brane probes filling two directions in the internal

space. We fix the z3 coordinate, i.e. z3 = c3e
iτ3 and we look for supersymmetric embeddings

filling z1 and z2. The embedding along the two complex coordinates, zk = eiτk(ξk+1 + ick)

for k = 1, 2 results non supersymmetric.

On the other hand, the non compact embedding where we identify z1 and z2 except

for constant phases and shifts

z1 = eiτ1(ξ2 + c1 + i(ξ3 + c2)) z2 = eiτ2(ξ2 − c1 + i(ξ3 − c2)) z3 = c3e
iτ3 (4.27)

results supersymmetric for any choice of the phases τk and of the real constants ck.

D7 effective strings. We probe the geometry with D7-brane covering the whole internal

space

zk = ξk+1 + iξk+4 k = 1, . . . , 3 (4.28)

By a long but straightforward computation we find that this is a supersymmetric embed-

ding, which satisfies the supersymmetry conditions.
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5. D-branes on the beta deformed background

5.1 Beta deformation of N = 4 SYM and its gravity dual

The N = 1 beta deformed gauge theory is a marginal deformation [22] of the N = 4 SYM,

with superpotential

Wβ = hTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) (5.1)

where Φi are the three chiral adjoint superfields, and β a complex constant. We consider β

to be real; in this case it is usually denoted as γ. Besides the U(1)R symmetry, this theory

has two global symmetries U(1)a × U(1)b with charges

Φ1 Φ2 Φ3

U(1)a 0 1 -1

U(1)b -1 1 0

These two global symmetries were crucial in the generating solutions technique of [13],

where the supergravity background dual to such gauge theory has been obtained. This

background has been analyzed using generalized complex geometry in [11]. The ten di-

mensional metric is

ds2 = e2Ads2
Mink + ds2

6, ds2
6 = e−2Ads̃2

6 (5.2)

where d̃s2
6 is the rescaled internal metric. The internal SU(2) structure manifold can be

described by local complex coordinates

z1 = rµ1e
iσ1 = r cos αei(ψ−ϕ2)

z2 = rµ2e
iσ2 = r sin α cos θei(ψ+ϕ1+ϕ2) (5.3)

z3 = rµ3e
iσ3 = r sin α sin θei(ψ−ϕ1)

The almost complex structure can be expressed [11] in terms of 1-forms (for details see the

appendix B) which give the rescaled metric a simple expression

ds̃2
6 = x2

1 + x2
2 + G(y2

1 + y2
2) + zz̄ (5.4)

where

G =
1

1 + γ2g
z =

d(z1z2z3)

r2√g
g = µ2

1µ
2
2 + µ2

2µ
2
3 + µ2

3µ
2
1 e2A = r2 (5.5)

The background has non trivial dilaton, RR and NS fluxes

eφ =
√

G (5.6)

B2 = γ
√

gG
y1 ∧ y2

r2
(5.7)

F3 = 12γ cos α sin3 α sin θ cos θdψ ∧ dα ∧ dθ (5.8)

F5 = 4(volAdS5
+ ∗volAdS5

) (5.9)
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This solution differs from the family of backgrounds reviewed in section 4.1, for example

the dilaton is not constant here. However it is an SU(2) structure manifold which can be

described by the ansatz (2.13) and (2.14) for the spinors [11]. The 1-form z in (5.4) is a

globally defined vector. The 2-forms j and ω are

j =
√

G(x1 ∧ y1 + x2 ∧ y2) (5.10)

ω = i(x1 + i
√

Gy1) ∧ (x2 + i
√

Gy2) (5.11)

and

a = ix = ieA/2 cos φ =
i√
2
eA/2(1 +

√
G)

1

2 (5.12)

b = −iy = −ieA/2 sin φ =
i√
2
eA/2(1 −

√
G)

1

2 (5.13)

The phases α and β in (2.14) are vanishing, α = β = 0. Once again the pure spinors (2.12)

are constructed with the rescaled forms (j, ω) → (e−2Aj, e−2Aω) and z → e−Az which refer

to the complete six dimensional metric (5.2).

We look for supersymmetric embeddings of D-branes in this background employing

the conditions (3.1) and (3.2).

5.2 D5 domain walls

We look for D5-brane embeddings filling three directions in the internal manifold and

placed in Minkowski at x3 = 0 with (ξµ = xµ, µ = 0, 1, 2). We choose the following ansatz,

which is supersymmetric in the undeformed γ = 0 case (AdS5 × S5),

zk = e−iτk(ξk+2 + ick) z̄k = eiτk(ξk+2 − ick) k = 1, . . . , 3 (5.14)

where τk, ck are arbitrary real constants. Computing the supersymmetry conditions (3.1)

and (3.2)5 this embedding results non supersymmetric for any choice of the constants

τk, ck. For instance in the simple case (τk = 0, ck = 0) the z and z̄ components of the

supersymmetry conditions (3.2) can be computed

1

3
PΣ[(gz̄ziz + z̄∧)Φ2] ∧ e−P [B] = PΣ[(gzz̄iz̄ + z∧)Φ2] ∧ e−P [B] = − i

16
e−Aγ

√

g G (5.15)

where the functions (A, g, G) are intended evaluated on the world volume. The result (5.15)

cannot vanish unless γ = 0, i.e. the undeformed case; hence the embedding (5.14) is not

supersymmetric in the beta deformed background.

5.3 D7 flavour branes

We look for supersymmetric D7 configurations filling the Minkowski space time ξµ = xµ

(µ = 0, . . . , 3) and wrapped on a non compact four cycle in the internal manifold, suitable

for adding flavour to the beta deformed theory. As already observed, an SU(2) structure

manifold is characterized by a globally defined vector (z), and a natural four cycle Σ is

5In the DW case of table 1.
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Φ1 Φ2 Φ3 Q1 Q̃1 Q2 Q̃2 Q3 Q̃3

U(1)a 0 1 -1 1 -1 0 -1 1 0

U(1)b -1 1 0 0 1 -1 0 -1 1

Table 2: U(1)a × U(1)b charges of chiral superfields.

where PΣ[z] = 0. In the beta deformed background the vector z is (5.5), and the condition

PΣ[z] = 0 implies, in complex coordinates,

z1z2z3 = m3 (5.16)

with m constant.

We then take the following four cycle embedding for D7-branes

zk = ξk+3e
iξk+5 k = 1, 2 z3 =

m3

ξ4eiξ6ξ5eiξ7
(5.17)

with no world volume flux, i.e. F = 0. By direct inspection we find that this embedding

satisfies the conditions6 (3.1) and (3.2), and hence is supersymmetric. It preserves the

translational invariance of ϕ1 and ϕ2. We then expect the U(1)a and U(1)b symmetries to

be preserved in the dual gauge theory description.

This embedding and the dual flavoured gauge theory can be explained as follows. We

have three sets of Nf D7 branes located at z1 = m, z2 = m, z3 = m respectively, each one

supporting a flavour group SU(Nf ). We can join these branes à la Karch and Katz [18]

and obtain one single set of Nf D7 branes located as in (5.17). These D7-branes terminate

before reaching the IR region and the conformal invariance is explicitly broken by the

mass m, which also breaks the flavour groups SU(Nf )× SU(Nf )× SU(Nf ) to the diagonal

subgroup.

In order to deduce the superpotential of the dual gauge theory we observe that the

same configuration can be realized in the undeformed (γ = 0, AdS5 × S5 ) case; here the

superpotential is the following7

W = WN=4 +tr Q1Φ1Q̃1 +tr Q2Φ2Q̃2 +tr Q3Φ3Q̃3 +m tr (Q1Q̃2 +Q2Q̃3 +Q3Q̃1) (5.18)

Note that the massive flavours preserves the U(1)a×U(1)b symmetry, assigning the charges

as in table 2. Now, for Nf D7 branes embedded as (5.17) in the beta deformed background,

the dual gauge theory is beta deformed N = 1 SYM coupled to three different massive

flavours. The resulting phase factors of the terms in the superpotential (5.18) can be easily

obtained following the prescription of [13] with the charges in table 2, having

W = Wβ=γ + e−iπγ tr Q1Φ1Q̃1 + eiπγ tr Q2Φ2Q̃2 + e−iπγ tr Q3Φ3Q̃3 +

+m tr (Q1Q̃2 + Q2Q̃3 + Q3Q̃1) (5.19)

Note that the flavour mass terms are not affected by the beta deformation.

6In the STF case of table 1.
7We set the couplings to one for simplicity.
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Other D7 embeddings. If we do not require the U(1)a and U(1)b global symmetries

to be preserved we can try to embed the D7 branes in other submanifolds, with vanishing

world volume flux. The computations of the supersymmetry conditions (3.1) and (3.2) get

more complicated.

We take the embeddings

ξµ = xµ µ = 0, . . . , 3

zi = ξ4e
iξ6 zj = ξ5e

iξ7 zk = m0 i 6= j 6= k = 1, 2, 3 (5.20)

A long computation shows they are supersymmetric for any choice of the mass m0. Here

the dual gauge theory is beta deformed N = 1 SYM plus Nf flavours8 which couple with

the adjoint field Φk.

Finally, after a long computation, we find that the following D7 embeddings with chiral

symmetry breaking are supersymmetric

ξµ = xµ µ = 0, . . . , 3

zi = ξ4e
iξ6 zj = ξ5e

iξ7 zk =
m2

0

ξ5eiξ7
i 6= j 6= k = 1, 2, 3 (5.21)

The dual gauge theory is beta deformed N = 1 SYM with two kinds of Nf massive flavours

Q1 and Q2, which couple to Φj and Φk, respectively. The mass m0 breaks the flavour groups

SU(Nf )1 × SU(Nf )2 to the diagonal subgroup.

For these additional D7 embeddings the superpotential terms and their phase factors

can be obtained with the same procedure followed in the derivation of (5.19), by starting

from the N = 4 case (i.e. γ = 0).

5.4 Effective strings

Finally we take D-branes that fill just two coordinates in the Minkowski space time (ξ0 =

x0, ξ1 = x1). We place them at x2 = x3 = 0. We do not find supersymmetric configurations

of D3 or D5 branes. We instead find that a D7-brane covering the whole internal space

zk = ξk+1 + iξk+4 k = 1, . . . , 3 (5.22)

is supersymmetric.
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A. The supersymmetric family of backgrounds and IR PW

The supersymmetry equations for the ansatz (2.13), (2.14) was studied in [11]. They

imply, for complex solutions with constant dilaton, that the geometrical quantities can be

expressed as derivatives of a single function F . If the background does not depend on σ3

we have

Aij̄ =
∂2F

∂zi∂z̄j
i, j = 1, 2 (A.1)

Aij̄ᾱj =
∂2F

∂zi∂z̄3
, (A.2)

αiAij̄ =
∂2F

∂z̄j∂z3
, (A.3)

u2a3 cos 2φ + αiAij̄ᾱj =
∂2F

∂z3∂z̄3
. (A.4)

a3u
2 sin2 φ = − ∂

∂z3
F . (A.5)

The infrared geometry of the PW flow can be reconstructed in this family of supersymmetric

backgrounds as follows [11]. Choose coordinates

ez1 = r3/4 cos θ cos ϕeiσ1 ,

ez2 = r3/4 cos θ sin ϕeiσ2 ,

ez3 = r3/2 sin θeiσ3 .

The generalized Kahler potential F is

F =
3

4
r2(1 − 2 sin2 θ) , (A.6)

and the warp factor

e2A = r2

√

3

4
(1 + sin2 θ) (A.7)

The other quantities are determined, for example

sin 2φ =
sin θ

√

2 + sin2 θ

1 + sin2 θ
(A.8)

A11̄ = r2

(

cos2 θ cos2 ϕ +
cos4 θ cos4 ϕ

3 + 3 sin2 θ

)

(A.9)

A12̄ = A21̄ =
r2 cos4 θ sin2 ϕ cos2 ϕ

3 + 3 sin2 θ
(A.10)

A22̄ = r2

(

cos2 θ sin2 ϕ +
cos4 θ sin4 ϕ

3 + 3 sin2 θ

)

(A.11)

a3 =
1 + sin2 θ

4r(2 + sin2 θ)
(A.12)
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B. Beta deformed gravity dual

We have already introduced the complex coordinates zi (5.3); the one forms appearing

in (5.4) are defined as [11]

x1 + iy1 = e−iσ1

√

g

µ2
1(µ

2
2 + µ2

3)

(

dz1 −
z̄2z̄3z

r2√g

)

(B.1)

x2 + iy2 = e−iσ2

√

1 +
µ2

3

µ2
2

(

dz2 −
z̄1z̄3z

r2√g

)

+
µ2

3e
−iσ1

µ1

√

µ2
2 + µ2

3

(

dz1 −
z̄2z̄3z

r2√g

)

(B.2)

z =
d[z1z2z3]

r2√g
(B.3)

The internal metric (5.4) gives then [13]

ds̃2
6 = dr2 + r2

(

3
∑

i=1

(dµ2
i + Gµ2

i dσ2
i ) + γ2Gµ2

1µ
2
2µ

2
3(dσ1 + dσ2 + dσ3)

2

)

(B.4)
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